Lecture 16

In this lecture, well see move applications of quotient groups.

Converse to Lagrange's Theorem is NOT true.
Let's consider the group A_{4}. We know that $\left|A_{4}\right|=12$ and 6/12. We claim that there isn't a subgroup of A_{4} of order 6. If H were such a subgroup, then since $\left[A_{4}: H\right]=2, H \triangleleft A_{4}$. So, $\frac{A_{4}}{H}:$ 0 group of order 2 . Let $\alpha H \in \frac{A_{4}}{H}$ be the nonidentity element.
Since ord $(\alpha H)=2 \Rightarrow(\alpha H)^{2}=\alpha^{2} H=H$ and hence $\alpha^{2} \in H$, i.e., for all $\alpha \in A_{4}, \alpha^{2} \in H$. However, there are 9 different elements of the form α^{2} in A_{4} [Check this!] but order of H is 6 , so this is impossible. Hence A_{4} can't have a subgroup
of order 6 .

So, we have seen that the converse of Lagrange's theorem is not true. A natural question then arises that, can we atleast say something about the converse of Lagrange's theorem, i.e., can we say that for some special divisors of $|G|$, there do exist a subgroup of that order?
The next two (amazing!) theorems tell us that if is indeed the case.

Cauchy's Theorem
Let G be a finite group and p be a prime number such that $p /|G|$. Then G contains an element of order p.

Remark:- The moment we have an element of order p, say a, we have a subgroup of order p $\langle a\rangle$.

We'll only prove Cauchy's theorem for abelian groups, in this lecture and will prove it for general groups later.

Proof of Cauchy's Theorem (for abelion group) Let $|G|=n$ and $p \mid n$. The proof is by strong induction on $|G|$.

If $|G|=2$, then $2||G|$ and G has an element of orcler 2 .
Induction Plypothesis Suppose for all abelian groups H, with $|H|<|G|$ and $p||H|, \exists$ an element of order p in H.
Well prove the result for G. First of all, G
has an element of prime order, say q (which might be different from p). Why? Suppose $x \in G$ and $\operatorname{ord}(x)=m$. Then from prime factorization, write $m=q s$ where q is a prime and s is the left-oner part. Then $\operatorname{ord}\left(x^{s}\right)=q$.
So let $a \in G$ be the element of some prime power, q. If $q=p$, then a is the desired element. If $q \neq p$, then let's look at $\langle a\rangle$.
Since G is abelion $\Rightarrow\langle a\rangle \triangleleft G$ and hence $\frac{G}{\langle a\rangle}$ is a group. Moreover, $\left|\frac{a}{\langle a\rangle}\right|=\frac{n}{q}<n$.

Also, since $\left.\operatorname{gcd}(p, q)=1 \Rightarrow p| | \frac{a}{\langle a\rangle} \right\rvert\,$. So, by the induction hypothesis, $\frac{G}{\langle a\rangle}$ has an element of order p. The theorem now follows from the
following result, which you'll prove in Assignment 3 .

Result [see Assignment 3] Suppose Gis a finite group and $H \triangleleft G$. If $\frac{G}{H}$ has an element of order n, show that G has an element of order.

So, for example, if we have a group whose order is, say, 8633 , then you immediately know that it has an element of order 97 and 89.

We now, state another theorem, which gurantees existence of groups of certain order. Again, well just prove if for abelion groups, deforming the proof for the general case, till the later part of the course.

Sylow's Theorem
If G is a finite group, p is a prime number such that $p^{\alpha}| | G\left|, p^{\alpha+1} \nmid\right| G \mid$ (i.e., $p^{\alpha+1}$ cloenn't divide |a|) then G has a subgroup of order p^{α}.

Proof (for abelian groups only) If $\alpha=0$ then $\{e\{$ is such a subgroup. So suppose, $\alpha \neq 0$. Then since $p^{\alpha}| | a|\Rightarrow p||G|$, so from Cauchy's theorem, G has an element of order p, say $a \in G$. The idea is to consider a special set, prove that it is a subgroup and then prove it's order to be p^{α}. Consider, the set

$$
S=\left\{x \in G \mid x^{p^{m}}=e, m \in \mathbb{Z}\right\}
$$

$e \in S$ and $a \in S$, so $S \neq \phi$.
It's very easy to use the sulogroup test to see that S is a subgroup.

Claim: $|S|=p^{\beta}$ for om integer $\beta, 0<\beta \leq \alpha$.
Suppose q is a prime which divides $|s|$. Then by Cauchy's theorem, \exists an element b $\in S$ sot. $\operatorname{ord}(b)=q$. If $q \neq p$, then since $b \in S$, we know ord $(b)=p^{s}, s \in \mathbb{Z} \Rightarrow q=p^{s}$, which is impossible. So, p is the only prime dividing $|s| \Rightarrow \quad|s|=p^{\beta}$ for some β.
If $\beta>\alpha \Rightarrow$ by Lagrange's theorem, $|S|||G|$ \Rightarrow atheast $p^{\alpha+1}| | G \mid$ which comnot happen, so $\beta \leq \alpha$ 。

Claim $\beta=\alpha$.
Suppose $\beta<\alpha$. Then since $s \Delta G \Rightarrow$
$p\left|\left|\frac{G}{s}\right| \Rightarrow\right.$ by Cauchy's theorem, \exists an element $x S \in \frac{G}{S}, x S \neq S$, sot. and $(x S)=p$.

This means, $x^{p} S=S \Rightarrow x^{p} \in S$.
But since $x^{p} \in S \Rightarrow\left(x^{p}\right)^{p t}=e, t \in \mathbb{Z}$.
So, $\left(x^{p}\right)^{p t}=e \Rightarrow x^{p t+1}=e \Rightarrow x \in S$ by the definition of S.

This contradicts the fact that $x S=S$.
So $\beta<\alpha$ is not possible.
$\Rightarrow \quad|S|=p^{\alpha}$ and S is the desired subgroup.
(164)

In the next lecture, well start studying homomor. -phisms and is omorphisms.

